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Traveling waves in phase-separating reactive mixtures
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A model of phase separation of chemically reactive ternary mixtures is constructed. In this model, spatially
periodic structures that coherently propagate at a constant speed emerge through a Hopf bifurcation at a finite
wave number. It is shown by computer simulations that both lamellar and hexagonal structures undergo a
coherent propagating motion in two dimensions, and there are two types of traveling hexagons depending on
the relative direction between the traveling velocity and the lattice vectors of the hexagonal structure. Ampli-
tude equations for the traveling waves are derived, and the stability of the traveling and standing waves is
discussed.
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[. INTRODUCTION mechanism for formation of periodic structures is math-
ematically equivalent to the microphase separation in block
Oscillation of spatially periodic structures appears in vari-copolymerg14,15.
ous systems far from equilibrium. One example is the oscil- The purpose of the present paper is to investigate, from a
lating roll structure in Rayleigh-Beard convection of binary general point of view, self-propagation of microscopic cellu-
mixtures, where a dynamical coupling between the local conlar structures far from equilibrium. We consider a ternary
centration and the local temperature causes an overshoot ofixture with componentsA, B, and C which undergo a
domain motion resulting in an oscillatioisee Ref[1] and  chemical reactio/A—B—C—A. The reason for introduc-
the earlier references cited thergiPropagation of a stripe ing this hypothetical cyclic linear reaction is that it is the
structure has also been observed experimentally in the elesimplest way to maintain the system far from equilibrium
trohydrodynamic instability of liquid crystal®]. These are and hence most convenient to explore the features of non-
macroscopic dynamic patterns out of equilibrium. equilibrium systems without being heavily involved in math-
Other examples of formation of oscillating domains areematical complications. The componerisand B are as-
microscopic. In contrast to the macroscopic nonequilibriumsumed to be phase separated at low temperature. This is
structures, it is emphasized here that phase transitions genenodeled by the usual Cahn-Hilliard type equation, which has
ally play a relevant role for the dynamics of microscopic been studied extensively for many yeft$,17.
domains. It has been found that adsorbates on metal surfacesWe make several comments on the cyclic reaction em-
exhibit propagating and/or standing oscillations of nano- omployed in the present paper. First of all, we mention that this
mesoscopic domaing3,4]. Hildebrandet al. [5] (see also reaction does not violate any thermodynamic law since we
[6]) introduced a model for traveling nanoscale stripe strucassume other chemical speciBs E, ... which undergo
tures in surface chemical reactions and successfully repra&zhemical reactions such #+D—B. We do not consider
duced the traveling stripe structure. In their model, nonlocathem explicitly, assuming that they are supplied rapidly and
attractive interactions between adsorbates were considerddgave high mobility so that the concentrations are constant in
which cause a first order phase transitiphase separatipn space and time. Second, as a hypothetical experiment using
of the adsorbates. This property together with a chemicathe cyclic reaction, we consider an adsorbed system on a
reaction between the adsorbates is the origin of the travelingubstrate supplied from the gas phase. Suppose that the sub-
waves. strate has a square lattice divided by two sublattices like a
It is worth mentioning that a traveling mesoscopic stripecheckerboard, and that the irrelevant species Dkeccupy
pattern has also been observed experimentally in Langmuwonly one of the sublatticegblack sublattice whereas the
monolayers[7]. Quite recently, this phenomenon has beenmoleculesA and B occupy only the other sublattioggvhite
studied theoretically by introducing a set of model equationsublattice. We assign the compone@tas empty sites of the
that contains a phase separation mechan&m white sublattice. The reactioA+ D —B is assumed to take
In phase separation in thermal equilibrium, domains genplace as a bimolecular conversion, the reactbr C is a
erally grow indefinitely. However, it is well known that the desorption of the specidsto the gas phase, and the reaction
domain growth ceases at a certain length scale if chemical — A is interpreted as the adsorption of molecufesrom
reactions take plac9—13. The resulting domain structure the gas phase. In this way, a cyclic reaction is achieved,
is periodic in space but not necessarily oscillatory. Thewhich is irreversible as a whole because of the consumption
of D.
The present study is a fusion of the theory of phase tran-
*Present address: Yokoyama Nano-structured Liquid Crystasitions and physics of nonequilibrium systems. So far these
Project, ERATO, Japan Science and Technology Corporation, 5-9-8v0 subjects have been thought of as unrelated problems.
Tokodai, Tsukuba 300-2635, Japan. Recently, however, a combined study of these different fields
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has been anticipated, for instance, to control various nanos- D, , D )

cale structures. F=j dr| = [Vyl*+ = [Vel*+w(p.d) |, (3
Our main concern is the self-organized propagation not

only of stripe structures but also of hexagonal structures iRyhere D, and D, are positive constants and(i, ) is a

two dimensions. We will show in computer simulations of potential function. The last terms of Eq&l) and (2) are

the present system that both a lamellar structure and a hegaaction terms, ané(y, ) andg(y, ¢) are, in general, non-

agonal structure exhibit coherent self-propulsion when thgnear functions ofy and ¢.

uniform stationary state becomes unstable. o The kinetics of block-copolymer systems is described by
A traveling hexagonal pattern has been obtained in thgne same type of equations as E(8.and (2). In this case,

damped Kuramoto-Sivashinsky equat[di8] and in a model f(4,4) and g(i,$), which are linear ing and ¢, come

equation for a neural fielffl9]. In these systems, the travel- f,om the nonlocal interaction between monomers.

ing structures appear as a secondary bifurcation after forming Here we study the linear stability of the uniform equilib-

a motionless structure. Compared with these studies, we béym solution y= o and b= ¢y, determined byf (1o, bo)

lieve that our system of ternary reactive mixtures has a wideL_ g g4 9(o,$e)=0. Using the Fourier components,

applicability, showing that both lamellae and hexagons can g4 ¢ With wave numberq for the deviation ofy and ¢

travel in a self-organized manner. The preliminary results,q o and ¢, respectively, we have the linearized forms

have been published in R4R0]. of Egs. (1) and(2) as
The organization of this paper is as follows. In the next
section, we construct a model for phase-separating ternary d [ ¥q ¥y
reactive mixtures and perform a linear stability analysis of E( & )= q( & ) (4)
q q

the model equations. In Sec. Ill we carry out numerical
simulations of our model in one and two dimensions_. It iS\where the linear evolution matrig, is given by
shown that both lamellar and hexagonal structures in two
dimensions can travel through a Hopf bifurcation at a finite Lq= —PM(Q?D+ W)+ A, (5)
wave number. In Sec. IV we derive the amplitude equations

for a supercritical Hopf bifurcation from our model equa- where M and D are diagonal matrices defined a%t
tions. The stabilities of traveling and standing wave solutions=diag(M,,M,) and D=diag(D,,D,), and W=(w;;) and
of the amplitude equations are analyzed, and the phase dyt=(a;;) (i,j=1,2) are matrices with components;;
namics of the traveling lamellar structure in one and two=w,,,(¥q,®o), W= Wao1=W,4(#0, o), Wy,
dimensions is also developed. In Sec. V we discuss theoreti=w ,4(, o), a11="f,(%o,b0), a="F4(o.bo), an
cally the traveling hexagonal structures, considering the am=g, (o, o), and a,=9g4(o.$o), Where the functions
plitude equations obtained by the single mode approximawith the subscriptss and ¢ mean the partial derivatives with
tion. Finally, we summarize our work and touch on futurerespect to their variables. Note that the matrixis always

problems in Sec. VI. symmetric, whereas the matrix is, in general, not symmet-
ric, although it is symmetric for block-copolymer systems.
Il. CHEMICALLY REACTIVE TERNARY MIXTURES The' eigenvalggas'q of L, dgtermine the linear stability of
_ the uniform equilibrium solution. One of the control param-
A. Generic model eters for the stability in our model is the temperatdre

Let us consider a ternary reactive mixture that consists ofvhich enters througlv,; andw,, which are linear functions
molecules of type\, B, andC and denote their local concen- of T. Herea}fter, we introduce for convenience the control
trations by, ¥, andy, respectively. When the normal- parameter mstead ofT, such that the umform state becomes
ization conditiony,+ ¢+ Yo=1 is satisfied at each space unstab!e as increases. Note; that determines the t_herr_no—
point, two of these variables are chosen to be independerflynamic stability of the uniform stateyg, ¢o), which is
Hence we define the local kinetic variablegr,t) and Stable ifw;;=0 and de¥¥=0 in the absence of chemical
&(r,t) at positionr and timet as = yo— g and p=4y,  reactions.

+ig. We assume that these variables obey the following Since the eigenvalues Of_sz(QZDJFW)_ are always
type of kinetic equation: real, the properties ofl prescribe the type of instability. For

simplicity, we set M;=M,=1 below, which does not

Y oF change the essence of the following argument. Suppose the

ot V| M.V W, +1(4.¢), (1) system of ordinary differential equations for E¢E) and(2)
(g=0 modg is stable, that is,

d oF tr A<0 and det4>0. 6

As 7 is increased, the largest Rg becomes positive at a

- ; : finite wave numberq=q.#0 and either Turing-type
whereM ; andM, are the mobilities associated wighand ¢ o ¢ . .
and are assumed to be positive constants, although they m&&m )\.qc_o) or Hopf-type (Imhq #0) instabilities occu.r de-
depend ony and ¢ in general F is a free energy functional Pending onA. When detC, =0 and try <0, the Turing-
of Ginzburg-Landau type: type instability occurs. In this case we expect that
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stationary (motionles$ periodic structures emerge. On the where
other hand, the Hopf-type instability, which we are con-

i 1
cerned with, occurs when déf >0 and 7=2D,— o (13)
Cc
L __(trW)2+ A=0 7
= el
with ¢
2D, 1 2 bc
trw K= + + In ,
2_ _ 1-2 1- 1-2 2(1—
dc >tD (8) dc bl ¢c) o ( ¢c) 15

for tr)/<0. In this case a traveling wave or a standing os-and the higher order couplings betwegrand ¢ are omitted
cillation is expected to be revealed. in Eq. (12). The constantp, is the spatial average @b (0

The above analysis implies that an oscillatory instability < ¢.<1).
at a finite wave number, which is sometimes called a wave As is well known in the theory of phase separatj@2],
instability, is induced by the thermodynamic instability of the D, term cannot be ignored in stabilizing the short wave-
phase separation. A wave instability also occurs in thdength modes in the phase-separated state. On the other hand,
FitzHugh-Nagumo model with nonlocal coupling where theD, term does not cause this difficulty so that we omit this
drifting domains have been obsenf&tl]. It should be noted term for simplicity. The last term in Eqg12) produces a
that in block-copolymer systems only Turing-type instabili- diffusion termM,KV?2¢ in the kinetic equatiori2). We will

ties can occur since the system is variational. ignore this term by puttingK =0 in most of this paper. The
effect of this diffusion does not essentially change the do-
B. Simplified model and its linear stability main dynamics, as will be shown in Sec. VI. By comparing

Egs.(1 15), it i t that th f diffusi
Now we construct a concrete model which shows self- gs.(13) and(19), it is evident that the absence of diffusion

i f spatiall iodic struct We start with th of ¢ does not impose any restriction of the diffusionyaf
propagation ot spatially periodic structures. vve start wi € Based on the above considerations, we can greatly sim-
lattice gas Hamiltonian for a ternary mixture:

plify the model equation$l) and (2). Under the further as-
1 sumptionM;=M,, Egs.(1) and(2) become, with appropri-

H=—22 2 Juptha(i)dg(i+ ), (9) ately scaled variable$we use the same symbols for the
2103 ap rescaled variables

wherei denotes the lattice point an@istands for the nearest w 5 5

neighbor vector |@#=1). ¢,(i)=1 when the lattice poini 5t = VLDV gyt (), (16)
is occupied by amx molecule, and otherwise equals zero.

The coefficient,,; is the interaction constant betweerand ¢

B molecules, andy,3=A,B,C. We are assuming that the Ezg(lﬂ’ ¢). (17)
interaction betweerA and B molecules is repulsive, i.e.,

Jag<0, and thatC molecules are neutral for both and B A Landau-type expansion of the potentiaP) is valid for

molecules. For simplicity, we hereafter consider the symmetthe weak segregation regime near the phase-separation tem-
ric case, that is,yac=xsc, where yac=—Jact(Jan  peraturer=0. We have verified in the numerical simulations
+Jceo)/2 and xgc=—Jgct(JgetIcc)/2. By using the shown in Sec. lll that the spatial variationsfand¢ do not
mean field approximation and taking the continuum limit, deviate substantially from a sinusoidal function. Thus the
one can readily obtain the free energy functional in the formpresent treatment has internal consistency.

of Eq. (3). Since this procedure is standd2P], we do not Suppose that the system undergoes the following cyclic
describe it in detail. The coefficieni3,; andD, are given, chemical reactions:

respectively, by

Y1 Y2 73
:JAA+JBB_ E w0 A—B—C—A, (18
! 4 2" wherey;, y,, andys are the reaction rates. From the mass
action law, the reaction terms in Eg4.6) and (17) can be
JaatIee  Jas written as
Do=—7—+ 5 FJdcc7JacJsc- (13)
(W d)=—| v+ 2] yi= L+ 5| ¢+ 73, (19
The uniform partw in Eq. (3) is given by the expansion as b=\t s 3
_ T, U, K 2 Y2 Y2
W=—S ¢+ g+ S (b= )", (12 9 d)=5¥—| 5 trs| ot s (20
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FIG. 1. Linear stability diagram for Eq§16) and(17) with Egs.
(19) and(20) in 7-vy, plane forD,=1, y,=0.3, andy;=0.05. The

solid and dashed lines in this figure indicate the Hopf- and Turing-
type instabilities, respectively. All the quantities in this figure and

Figs. 2—8 below are dimensionless.

In this case, the stationary uniform solutiogtg and ¢, are
given by

¥a(y2— v1)
= : (21)
O vt vavat vam
ya(y2+ v1)
d)O: ’ (22)
Y1Y2t Y2¥3t ¥371
and the matrix4 is given by
Y2 Y2
ity _(71_2+73)
A= y y (23
2 2
2 12T ”3)
A Hopf-type instability occurs when
Y2
1Yzt v2vst vava—| 5+ vs|(vat 2t v3)>0
(24)
and
(7—3¢5)°
T_(yl+ Y2t v3)=0 (25)
atq=gq. where
— 31/13 12
The critical valuer, is given from Eq.(25) by
7= 305+ 2D1(y1+ ¥2t 73). 27
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FIG. 2. Spatial profiles ofy(x,t) (solid lineg and ¢(x,t)
(dashed lingsobtained by one-dimensional simulations fay 7
=1.6, v,=0.15 (just above the Hopf instability lineand (b) 7
=1.6, y,=0.25 (just above the Turing instability lineat t
=5000. Both profiles off(x,t) and ¢(x,t) are propagating in the
direction indicated by the arrow with the same velocity in the case
of (a), whereas they are stationary in the casélpf

The linear stability diagram for Eq$16) and (17) with
Egs. (19 and(20) in the 7y, plane is shown in Fig. 1 for
D,;=1, y,=0.3, andy3=0.05. The solid and dashed lines
in this figure indicate the Hopf- and Turing-type instabilities,
respectively. The stationary uniform state is stable for param-
eters below these lines.

IIl. NUMERICAL SIMULATIONS

In this section, we shall show, in one and two dimensions,
the results obtained by computer simulations of EG®)
and (17) with Egs.(19) and(20) above the stability lines in
Fig. 1.

First, we confirm numerically that a propagating solution
exists in one dimension. The space mesh and the time incre-
ment have been set as 0.5 and 0.001, respectively. Figure
2(a) shows such a solution far= 1.6 andy,=0.15, which is
just above the Hopf instability linéhe solid line in Fig. L

The other solution of Eq(25) is unphysical since it causes In Fig. 2(a) the profiles ofy(x,t) (solid line) and ¢(x,t)

q§<0.

(dashed ling are plotted as functions of the spatial coordi-
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(a) (b) (c) (b)

FIG. 3. Snapshots af(r,t), indicated in gray scale increasing FIG. 4. Snapshots ofy(r,t) indicated in gray scale increasing
from black to white, att=50 (a), 500 (b), and 5000(c) for 7 from black to white at=50 (a), 500 (b), and 5000(c) for 7=1.6
=1.6 and y,=0.2. The white arrow indicates the direction of andy,=0.1. The white arrow indicates the direction of propagation
propagation of the lamellar structure. of the hexagonal structurgype I).

natex at t=5000. Both profiles ofi/(x,t) and ¢(x,t) are lamellar patterns but also hexagonal structures can undergo
moving to the right, in this case, at a constant speed keepingpherent propagation by with appropriate valygsand ¢,.
their shapes and the phase difference between them, whereasFigure 4 shows one example fgip= —0.20, ¢7=0.40,
Fig. 2(b) depicts stationary patterns @f and ¢ without a  where three snapshots ¢{r,t) are displayed in gray scale
phase difference for=1.6 andy,=0.25 above the Turing increasing from black to white at=50 (a), 500 (b), and
instability line. 5000(c) for r=1.6 andy,=0.1. At the early stage, droplet-
like domains move irregularly, accompanied by breakups and
coalescence of domaifiBigs. 4a) and 4b)] and finally form
a regular hexagonal pattern traveling in one direction at a
Now we extend the simulations to two dimensions. Theconstant speefFig. 4(c)]. The propagation direction of the
simulations have been carried out on a X228 square lat- hexagons is indicated by white arrows in Fig. 4.
tice with the mesh siz&x=0.5 using the finite difference Another type of traveling hexagons appears in Fig. 5,
Euler scheme with a fixed time steft=10"2 for several where three snapshots @f(r,t) at t=50 (a), 500 (b), and
values of parametersandy,. Other parameters are fixed at 5000 (c) are displayed forr=2.0 and y,=0.06 (4=
D;=1, y,=0.3, andy3=0.05. As the initial conditions we —0.33, ¢4=0.50). The transient behavior of this system is
start with homogeneous states with small random perturbasimilar to that shown in Fig. 4. However, the propagation
tions which satisfy i) = o and ()= ¢y and use periodic direction(white arrows in this figurein the asymptotic state
boundary conditions, where the angular brackets mean sp#& perpendicular to that of the primary wave vectors.
tial averages. Thus, it is found that there are at least two different types
As predicted by the linear stability analysis, no patternof traveling hexagons. Hereafter, we call the case shown in
appears for parameters below the solid or dashed lines in Figrig. 4 type | and that in Fig. 5 type Il
1. For parameters above the dashed line at which the Turing- Several “phases” of nonequilibrium states have been ob-
type instability occurs, stationary lamellar or hexagonal pattained by carrying out the simulations for various param-
terns appear, depending on the equilibrium valuegpbnd  eters. Figure 6 summarizes, in the parameter spager],
¢o. For parameters above the Hopf-type instability linethe various dynamic structures in two dimensions. The sym-
(solid line in Fig. 1, various traveling patterns are observed.bols indicate stationary lamellar structur@osed squares
Henceforth, we concentrate on the parameter region near thieveling lamellar structure®pen circleg, traveling hexago-
Hopf instability line. nal structures of type (crossey traveling hexagonal struc-
Figure 3 displays three snapshotsddfr,t), indicated in  tures of type ll(pluses, and the uniform stable statepen
gray scale increasing from black to white,tat50 (a), 500  squarg. For some parameters we could not distinguish be-
(b), and 5000(c) for 7=1.6 andy,=0.2 (= —0.059, ¢, tween type | and type Il hexagons within the present simu-
=0.29). In the early stage, irregular patterns with motions ofiations. Such parameters are plotted with asterisks in Fig. 6.
distorted standing waves are formfegig. 3(a)]. After this
transient regime, partially coherent lamellar structures whichgg -

A. Traveling lamellar pattern

by Hildebrandet al. [5] in surface chemical reaction sys-
tems, although the evolution equations are quite different. (a) (b)

FIG. 5. Snapshots of(r,t) indicated in gray scale increasing
from black to white at =150 (a), 500 (b), and 5000(c) for 7=2.0

One of the characteristic features of the present modedndy,=0.06. The white arrow indicates the direction of propaga-
system(16) and(17) with Eqgs.(19) and(20) is that not only  tion of the hexagonal structutgype II).

B. Traveling hexagonal pattern
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3 u statonary fanel In order to verify that the emergence of traveling waves is
\ ° ::v‘:?::yla::ﬁa:e quite general in the present model system, we carried out
‘-L < trav;"nghexagons(TyDe_l) systematic simulations for a smaller value of ie., 7
25y + ravpiing hexagons (Type-l) =0.2. Setting the other parameters #s=0.005 andy,
® (indistinguishable) =0.0001, the bifurcation line in Fig. 1 shifts downward and
O stationary uniform state 7.~0.16-0.17 depending on the reaction rage We found
ez +-+-0 that stable propagating lamellae appearjigr 0.0012, trav-
+ % %O eling hexagons of type | appear fgs=0.0009, and those of
}J\x %X X 0000 "I 1 type Il appear fory_2=0_.0008. These are the same tendencies
15 m as those shown in Fig. 6. Whep,=0.001, we found an
oscillation such that two kinds of lamellae perpendicular to
each other are formed alternately. A similar pattern for a

1 different set of parameters has also been obtained near the
0 05 0t 015 02 025 03 03 04 point where the Turing-type and Hopf-type bifurcation lines
Y2 cross[23]. Although we carefully changed the parameigr

FIG. 6. Parameter dependence of the nonequilibrium states igt€p by step, the coexistence of motionless and propagating
(v,,7) space. The symbols indicate stationary lamellar structureé@mellag[21] was not observed in the present model system.
(closed squargstraveling lamellar structure®pen circley travel-  Finally, we mention that the propagating waves are robust
ing hexagonal structures of type(¢rossey traveling hexagonal once they are formed. Any destabilization of the waves has
structures of type I(pluse$, and the stationary uniform statepen  not been realized. This will be confirmed theoretically for the
squarg. The asterisks mean the states where we could not distinamellar pattern in the next section.
guish between type-I and type-Il hexagons within the present simu-
lations. The Hopf and Turing instability lines are also shown for

. o C IV. THEORETICAL ANALYSIS
convenience; they are the same as those in Fig. 1.

OF TRAVELING LAMELLAE

In this figure the Hopf and Turing instability lines are also _ 1Ne computer simulations given in the previous section
shown for convenience:; they are the same as those in Fig. ghow that the Iqmellar structure exh|b|ts sellf—orgamzed co-

It is noted here that the value @f(r,t), which is the sum herent propagation above the Hopf bifurcation threshold. It
of the local concentrations o& and B molecules, becomes should be noted that a standing oscillation has never been
negative in some parameter regions. This shortcoming is du(ébserv_ed in simulati_ons. In order to understand this property,
to the simplification of the free energy given by EG2). W€ derive th(_a amplitude equation post_-threshold and exam-
However, we carried out the simulations avoiding this pa-"€ the stability of the oscillatory domains.
rameter region and believe that the results obtained would
not be altered even if a more refined free energy were em- : ,
ployed. A. Amplitude equation

The amplitude of the traveling waves is plotted in Fig. 7 We study the time-evolution equation$6)—(20) in one
for both lamellar (open circles and hexagonalcrosses dimension near the Hopf bifurcation point at the critical
structures. It is evident that the bifurcation for lamellae iswave numbeq, in the weakly nonlinear regime. The ampli-
supercritical whereas that for hexagons is subcritical. tude equation for Eq$16) and(17) near the Hopf instability

line is derived by means of the usual reductive perturbation

07 method[24,25, assuming that the bifurcation is supercriti-
cal, which is indeed the case as is shown in Fig. 7.
06T x X7 Near the bifurcation point, the most unstable mal&,t)
x X x % is the relevant number of degrees of freedom of EG$)
03 W ] and (17), that is, u~uy+U, where u=(¢,¢)" and u,
B ol % % =(o,d0)". In terms of the eigenfunctiond, and Ug de-
£ < 000 o fined below, the unstable mod#(x,t) is expressed as
5 02 X 0©°° Ut =W, (x,H)U, +Wa(x,) UgtC.C..  (28)
02 o ° ]
o
o1r o where c.c. denotes the complex conjugate #hdx,t) and
Wg(X,t) are the complex amplitudes of the plane wave so-

16 lution propagating to the left and right, respectively. The
T wave numben and the frequencw, of the plane wave are
. i : determined by the eigenvalue problem
FIG. 7. Amplitudes ofy in the traveling state for the lamellar y g P
(open circley [ y;=0.3, y,=0.2, and y;=0.05] and hexagonal

(crosses[ y,=0.3, y,=0.1, andy;=0.05] structures as functions

of the control parameter. (9= ch) U=0, (29)
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whered; denotes the partial differential operator with respect

to t (Ug also satisfies the same equajioRor the present
problem, we choose

UL:

L +iwct 1 —igcX+imct
. gldoxtiodt o= . e idextiog (30)

with a=(a,,+iw)/a;; andw, (>0) given by
wi=detLy = —aj,~ a1 (31)

By the standard procedure of perturbat{®@4,25, the final
amplitude equations fow, andWg are given, respectively,

by
W, = W, +baZW, —g|W, [2W, —h|Wg|?W, , (32)

9 Wr= W+ b5 Wg— g|Wg|?Wr—h| W, [*Wg, (33)

where all the coefficients are complex and are given by

T, ia,,
=_ 42
M 2qc 1 @, ) (34
ia
b=2D,q? 1+ wzz), (35)
C
3 a9
gfiqg 1+ —— 1+24y50;
aro— 2w
X 2z - e IS
9(ait+az)(azxp—2iw) —3wg
ia a
h=3¢2| 1+ —=|| 1+ 24y2¢? 22 |,
® 9(aj1tag)azyt og
(37

and 7=7— 7. with the critical valuer. of = at which the
bifurcation occurs. The constagt should not be confused
with the function in Eq.(20). This type of amplitude equa-
tion was also obtained in Reff26,27. Note that Eqs(32)
and (33) do not have terms proportional W, or ¢,Wg.

This reflects the fact that in our model the group velocity is

always zero, that isdw(qc)/dq=0, wherew(q)= ydetL,

near the bifurcation point. This comes from the particular

choice ofD,=0 in Eq.(3). This will be discussed in Sec. VI.

B. Stability of the traveling wave

PHYSICAL REVIEW B57, 056211 (2003

NZ= (413~ b’ 39
0 (m1—b10%), (39
J1

g
Qo= po—byq%— g_i(Ml_blqz)y (40)

and u=uq+iu,, b=b;+ib, with real numbersu,, wu,,
b,, andb,. A similar notation has also been utilized fgr
andh.

In order to study the stability of the solutid38), let us
introduce deviationg and » as

W, =W+ ¢ (41

Wr=WQ+ 7. (42

Substituting Egs(41) and(42) into Egs.(32) and(33) yields
up to the first order of the deviations

dié= pé+base—hNGE, (43)

din=pun+bdin—(W)2n—2gN37, (44)

Where; is the complex conjugate tg. Setting&ecexpigx
+At), we obtain

A=p—bg?—hN3. (45)
The growth rate of the deviatioéis given by
hy
Re\=(u,—by0%)| 1— 5" (46)
1

where we have used Eq39). Since (x;—b;q%)/g;=N3
>0, we need the stability condition for the traveling wave
(26,27
h1>g;. (47)
Next, we investigate the stability of the standing wave
solution given by

W(LO): Noeiqx+i()0t, W(RO): Noe—iqx-%—i&)ot, (48)
where(), and N, satisfy the following relation:
iQo=p—bg?—gN3—hN3. (49)

We introduce small deviations of the amplitudégx,t),
n(x,t) and the phaseg(x,t), 6(x,t) as

Here we examine the stability of the traveling wave solu- W, =No(1+ §)eltxiottie, (50
tion of Egs.(32) and (33). These equations have a set of o _
solutionsW(® andW(?) as Wr=No(1+ 7)e™ T %t10, (51

WO=0, WO=Nje o+t (38  From Egs.(32), (33), (50), and (51) we obtain the time-

evolution equations for the deviations. The deviations of the
where the real constan{, andN, are given by amplitudes obey up to the first order

056211-7
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dé=—29;N3E—2h NG+ Dby 026 —2qb,0,6—2qbya,e  Where

_b (92 , 52
20x® (52 CEZq(bz—%bl>, (62
dyp=—29:N2n—2h;N3&é+b, 027+ 2qb,d,n+2qb, 0,6
o 2g°b
b5 6, (53 D= bﬁ%bz) - 21 _ (63
01 9:1Ng

where we have used E¢9). In the long wavelength limit,
we may retain only the first two terms of E452) and(53). Here we consider the case where the fattof g,b, /g, in
In this case, the eigenvalues of the time-evolution matrix ar%q_ (63) is positive, so that the traveling wave solution is
N= — 2N2(Qi o). 54 stable for|g|—0. In this case, the coefficier becomes
0(91=hy) (54) negative for large values dfj|, which causes an Ekhaus-

Sinceg, is positive when the bifurcation is supercritical, we type _instability. Since & 2q%b;/(giNg) = (11— 39%b)/

have the stability condition of the standing wa\&8,27: (9:N3), this instability occurs when
-0,<h;<0;. 55
g1<N1<0y (55) q2>ﬂ' 64)
3b,

According to numerical calculations based on E&§) and
(37), we did not find parameters for which the standing wav
is stable as long ag;>0. This agrees with the fact that we
never found a standing wave in the simulations of Ef§)—
(20).

®Note from Eq.(39) that the conditiorg®< w4 /b, is required
for the traveling wave solution to exist.

We can obtain amplitude equations for traveling lamellar
structures which are similar to the equation for the one-
) _ dimensional case. The complex amplitudés (r,t) and

C. Phase dynamics for traveling waves WHr(r,t) of waves propagating to the left and right in the

Now we discuss the phase dynamics for the travelinglirection obey the following equations, corresponding to
wave solution. We write a solution of Eq&2) and(33) with  EQgs.(32) and(33):
the deviationst(x,t) and ¢(x,t) as

H 2
|
WL:O, WR: N0(1+§)efiqx+iﬂot+i(p. (56) ﬁtWL=,uW|_+ b((?x_z_qcai) WL_g|WL|2WL

The zeroth order solution was obtained in E@8). The first —h|Wg|?W,_, (65)
order equations are given by

H 2
|
[7t§=_2glNg§+b1(9>2(§+2qb2(9xg+2qb1(9xcp—b2(?§qz,7) OWr=uWg+b ax—ﬁai) Wr— g|Wg|*We
5 c
—h|W, |*Wkg, 66)
drp=—2qb1 050+ b330+ bd2é+ qbyd,p— 2g,N3E. W[ We (
(58

where the coefficienta, b, g, and h are defined in Egs.

Since the amplitude deviation decays rapidly compared witﬁ34)_(37)'

the phase deviation in the long wavelength modulation, we iO\I{]VSe ff;: SwlzoaggzzI(;Fr)n:)r;i?uggaesgugi/igim\x: \i/Criivev% (tjri;nv?arl]-
may eliminate¢ adiabatically by putting,é=0 in Eq.(57), . c e R )
so %lhat we h:\gle y oy p e a.(57 ing wave solution of Eq965) and(66) propagating in the

direction as

l . . .
£= 5 (20b10¢ = byip 20D+ b10%E). Wi =0, Wg=No[1+&(r,)Je ¥t melnd, - (67)
91Ng
(590 whereé(r,t) and ¢(r,t) are the small deviations associated
, ) , ) ) with the amplitude and phase, respectively. Repeating the
Applying Eq. (59) iteratively, we obtain the following ex- same procedure shown above, we obtain the phase equation

pression for¢ as a gradient expansion ¢f [26,27]: corresponding to Eq61) as
qb, b, ( 2q2b1) , q g
&= dxp+ -1+ dyet---. (60) 99=Ciyp+Dd2p— —| by+ —b )(92 , (68
giN5 " 201Nj giNg | W= CherDaem g [Pty 2| he (69

Substituting Eq(60) into Eq. (58), we obtain up to the sec- whereC andD are given by Eqs62) and(63), respectively.

ond order derivatives of Equation(68) implies that wherg>0 the phase deviation in
) they direction is destabilized. This corresponds to a zigzag-
dp=Cayp+Ddse, (61)  type instability.
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In the numerical simulations shown in Sec. Ill we never
found either Ekhaus- or zigzag-type instabilities. We should
say that the traveling wave solution is quite stable in our
model system.

V. THEORETICAL ANALYSIS
OF TRAVELING HEXAGONS

In two-dimensional systems, not only a lamellar structure
but also a hexagonal structure is allowed to exist as a spa-
tially periodic structure. As was shown in the previous sec- (@) (b)
tion, the hexagonal structure also undergoes coherent propa-

gat\llsn g\bove the Hopf instability Il_ne(.j . fth i V and wave vectoq; for traveling hexagonal domains of typéd)
e do not carry out a systematic derivation of the amp I"and type Il(b). Thick and thin arrows indicate the directions \6f

tqde eq_uatipns for t_h_e traveling hexagons mainly because thg, 4 qy, respectively, and the hatched regions represerith do-
bifurcation is subcritical and hence evaluation of each coefyins.

ficient of the amplitude equation is more involved. Here we
employ a simple mode expansion focusing on the two type
of the traveling pattern obtained in the simulations. _ _ _ _

- ) w =0 and * w;. If we choosew;=0, w,=w;, and wz=
we sgek a solution of AEqs{l@ and_(17) n th? . —w¢, then the traveling velocity is perpendicular tay;
P(r,)=y(r—Vt), ¢(r.t)=¢(r—Vt), with a traveling ve-  [see Fig. 8a)]. This is the type-I solution. On the other hand,
locity V. Here we make the approximation that the functionsthe type-Il solution of Eq.(70) is represented aso;=
#(r) and(r) are represented in terms of the lowest Fourier— 2w, and w,= w3, which the conditionw;+ w,+ w3=0.
modes as In this case is indeed parallel tg; as shown in Fig. ().

FIG. 8. Schematic picture of the directions of traveling velocity

h the special case that spF=0, Eq. (72) has the solutions

3 3
{p(r): 2 [ﬁqkeiQk'T, (;l)(r): 2 ;ﬁqkeiQk"’ (69 VI. CONCLUDING REMARKS
k==3 k=3

In this paper, we constructed a model equation for phase
where q=(q. cos(2m/3)k,q.sin(2m/3)k) (k==*1,-2,+3)  separation of chemically reactive ternary mixtures. In this
andgo,=0. Note thatl:’fq(,: o and [,5%: ¢o. We have veri- model the thermodynamic destabilization induces a Turing-

fied numerically that the actual spatial profile does not deviF HoPf-type instability at a finite wave number, depending

ate substantially from Eq69) near the Hopf bifurcation line N the parameters in the reaction terms. The phase diagram
although it is subcritical. for the nonequilibrium states was obtained numerically. The

From Eqs.(16), (17), and (69), we obtain a set of equa- traveling waves appear as a H.opf bifurcation at a_finite wave-
tions for ., &, andV. Eliminating 3, and introducing number. In two-dimensional simulations we obtained a trav-
ae Fae ' G eling lamellar structure and two typéype | and type Il of
the real amplitudé, and the phasé, as zqu:Ak exp( 6y, traveling hexagonal structures.
we finally obtain We derived the amplitude equations for the supercritical
_ Hopf bifurcation at a finite wave number from the model
Q(wk)AkzuAk—3q§[2z/roA,Ame*""+A§+ 2(A,2+A§1)Ak] equations and investigated the stability of traveling waves
and standing oscillations in one-dimensional systems. The
(70)  traveling wave is found to be stable in some parameter re-
_ gions. However, we have never found, at least numerically,
for k=1,2,3[l,m=k+1k+2 (mod 3] with any region in which a standing oscillation is stable. The
s 2 mathematical structure of the two types of traveling hexa-
(71) gons has been clarified by the amplitude equations derived
by the single mode approximation in two dimensions. How-
ever, in order to make a full comparison with the phase dia-
whereo=60,+ 60,+ 05, u=—0q3(Dg>—7)—(y1+ y,+7ys),  9ram shown in Fig. 6, obtained numerically, one needs a
w=0-V, andw.=Im \(q.) is the critical frequency at the Stability analysis of the traveling hexagonal patterns, which
Hopf bifurcation point. Note that two of the three phase vari-IS more involved mathematically and is beyond the scope of
ablesd, are arbitrary and only the sug is determined by ~the present study.

W T W .
Vw)=———7(ap-io),
w”tas,

the above equations. Therefore, E€RO) and(71) under the In the present set of model equatiofi) and (17), we
condition w; + w,+ w3=0 determineA, , ¢, andV. omitted the diffusion of¢. As a consequence, the group
WhenA,+#0, the imaginary part of Eq70) gives velocity of the traveling waves turns out to be identically
zero, as mentioned in Sec. IV A. However, it was shown in
02— > AA Ref.[26] that the stability condition$47) and (55) for trav-
— oy ——— =602 —5 s ling lamellar domai ltered when th locit
WK, Geho—p Sine. (720  eling lamellar domains are unaltered when the group velocity
witaz K is finite. Furthermore, we carried out additional simulations
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by adding the diffusion terrk V2¢ on the right-hand side of

PHYSICAL REVIEW E67, 056211 (2003

study will trigger further experiments for mesoscopic domain

Eqg. (17). Although we do not exclude the possibility that dynamics far from equilibrium.

other spatiotemporal patterns might appear wkehn0, we

Thermal fluctuations have been believed to be unimpor-

obtained essentially the same traveling waves, e.g., for th&ant for pattern formation far from equilibrium as far as mac-

fixed values ofK=0.05, D;=1, y,=0.3, v3=0.01, and
several values of, and 7.

roscopic patterns such as RayleighaBed convection and
Belousov-Zhabotinski reaction are concernéfee, how-

There is a simple explanation as to why one needs threever, the recent experimenf8] for electroconvection of
components of chemical species for coherently propagatintiquid crystals) In contrast, when the domain structure is of
domains. Suppose that the species are arrayed in oneiicroscopic scale as in the present model system, thermal
dimensional space a,B,C,A. After one cycle of chemical fluctuations cannot be ignored near the bifurcation points out
reaction, this order becomds C,A,B. This means that the of equilibrium and might qualitatively alter the properties of
domains are moving to the left. It is clear from this argumentthe transition. Concentration fluctuations around the deter-
that the relative phase difference of the chemical reactiomministic motion may also exhibit some characteristic features
determines the propagation direction and that a standing o#herent to nonequilibrium systems. We hope to return to
cillation is quite unlikely in the present system. these fundamental problems elsewhere in the future.

What we have shown in this paper is that phase transitions
in nonequilibrium conditions produce a rich variety of self-
organized domain dynamics, which never occur in thermal
equilibrium where the ordered state is motionless and is sim- We would like to thank Professor A. S. Mikhailov for
ply uniform or at most modulated in space. Although we dovaluable discussions. This work was supported by a Grant-
not know, at present, any concrete materials for phasen-Aid for Scientific Research from the Ministry of Educa-
separating reactive ternary mixtures, we hope that the presetion, Science, Sports and Culture of Japan.
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