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Traveling waves in phase-separating reactive mixtures

Tohru Okuzono* and Takao Ohta
Institute for Nonlinear Sciences and Applied Mathematics, Graduate School of Science, Hiroshima University,
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~Received 24 May 2002; revised manuscript received 7 November 2002; published 21 May 2003!

A model of phase separation of chemically reactive ternary mixtures is constructed. In this model, spatially
periodic structures that coherently propagate at a constant speed emerge through a Hopf bifurcation at a finite
wave number. It is shown by computer simulations that both lamellar and hexagonal structures undergo a
coherent propagating motion in two dimensions, and there are two types of traveling hexagons depending on
the relative direction between the traveling velocity and the lattice vectors of the hexagonal structure. Ampli-
tude equations for the traveling waves are derived, and the stability of the traveling and standing waves is
discussed.
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I. INTRODUCTION

Oscillation of spatially periodic structures appears in va
ous systems far from equilibrium. One example is the os
lating roll structure in Rayleigh-Be´nard convection of binary
mixtures, where a dynamical coupling between the local c
centration and the local temperature causes an oversho
domain motion resulting in an oscillation~see Ref.@1# and
the earlier references cited therein!. Propagation of a stripe
structure has also been observed experimentally in the e
trohydrodynamic instability of liquid crystals@2#. These are
macroscopic dynamic patterns out of equilibrium.

Other examples of formation of oscillating domains a
microscopic. In contrast to the macroscopic nonequilibri
structures, it is emphasized here that phase transitions g
ally play a relevant role for the dynamics of microscop
domains. It has been found that adsorbates on metal surf
exhibit propagating and/or standing oscillations of nano-
mesoscopic domains@3,4#. Hildebrandet al. @5# ~see also
@6#! introduced a model for traveling nanoscale stripe str
tures in surface chemical reactions and successfully re
duced the traveling stripe structure. In their model, nonlo
attractive interactions between adsorbates were conside
which cause a first order phase transition~phase separation!
of the adsorbates. This property together with a chem
reaction between the adsorbates is the origin of the trave
waves.

It is worth mentioning that a traveling mesoscopic stri
pattern has also been observed experimentally in Langm
monolayers@7#. Quite recently, this phenomenon has be
studied theoretically by introducing a set of model equatio
that contains a phase separation mechanism@8#.

In phase separation in thermal equilibrium, domains g
erally grow indefinitely. However, it is well known that th
domain growth ceases at a certain length scale if chem
reactions take place@9–13#. The resulting domain structur
is periodic in space but not necessarily oscillatory. T

*Present address: Yokoyama Nano-structured Liquid Cry
Project, ERATO, Japan Science and Technology Corporation, 5
Tokodai, Tsukuba 300-2635, Japan.
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mechanism for formation of periodic structures is ma
ematically equivalent to the microphase separation in bl
copolymers@14,15#.

The purpose of the present paper is to investigate, fro
general point of view, self-propagation of microscopic cel
lar structures far from equilibrium. We consider a terna
mixture with componentsA, B, and C which undergo a
chemical reactionA→B→C→A. The reason for introduc-
ing this hypothetical cyclic linear reaction is that it is th
simplest way to maintain the system far from equilibriu
and hence most convenient to explore the features of n
equilibrium systems without being heavily involved in mat
ematical complications. The componentsA and B are as-
sumed to be phase separated at low temperature. Th
modeled by the usual Cahn-Hilliard type equation, which h
been studied extensively for many years@16,17#.

We make several comments on the cyclic reaction e
ployed in the present paper. First of all, we mention that t
reaction does not violate any thermodynamic law since
assume other chemical speciesD, E, . . . which undergo
chemical reactions such asA1D→B. We do not consider
them explicitly, assuming that they are supplied rapidly a
have high mobility so that the concentrations are constan
space and time. Second, as a hypothetical experiment u
the cyclic reaction, we consider an adsorbed system o
substrate supplied from the gas phase. Suppose that the
strate has a square lattice divided by two sublattices lik
checkerboard, and that the irrelevant species likeD occupy
only one of the sublattices~black sublattice! whereas the
moleculesA and B occupy only the other sublattice~white
sublattice!. We assign the componentC as empty sites of the
white sublattice. The reactionA1D→B is assumed to take
place as a bimolecular conversion, the reactionB→C is a
desorption of the speciesB to the gas phase, and the reacti
C→A is interpreted as the adsorption of moleculesA from
the gas phase. In this way, a cyclic reaction is achiev
which is irreversible as a whole because of the consump
of D.

The present study is a fusion of the theory of phase tr
sitions and physics of nonequilibrium systems. So far th
two subjects have been thought of as unrelated proble
Recently, however, a combined study of these different fie
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has been anticipated, for instance, to control various na
cale structures.

Our main concern is the self-organized propagation
only of stripe structures but also of hexagonal structures
two dimensions. We will show in computer simulations
the present system that both a lamellar structure and a
agonal structure exhibit coherent self-propulsion when
uniform stationary state becomes unstable.

A traveling hexagonal pattern has been obtained in
damped Kuramoto-Sivashinsky equation@18# and in a model
equation for a neural field@19#. In these systems, the trave
ing structures appear as a secondary bifurcation after form
a motionless structure. Compared with these studies, we
lieve that our system of ternary reactive mixtures has a w
applicability, showing that both lamellae and hexagons
travel in a self-organized manner. The preliminary resu
have been published in Ref.@20#.

The organization of this paper is as follows. In the ne
section, we construct a model for phase-separating ter
reactive mixtures and perform a linear stability analysis
the model equations. In Sec. III we carry out numeri
simulations of our model in one and two dimensions. It
shown that both lamellar and hexagonal structures in
dimensions can travel through a Hopf bifurcation at a fin
wave number. In Sec. IV we derive the amplitude equati
for a supercritical Hopf bifurcation from our model equ
tions. The stabilities of traveling and standing wave solutio
of the amplitude equations are analyzed, and the phase
namics of the traveling lamellar structure in one and t
dimensions is also developed. In Sec. V we discuss theo
cally the traveling hexagonal structures, considering the
plitude equations obtained by the single mode approxim
tion. Finally, we summarize our work and touch on futu
problems in Sec. VI.

II. CHEMICALLY REACTIVE TERNARY MIXTURES

A. Generic model

Let us consider a ternary reactive mixture that consists
molecules of typeA, B, andC and denote their local concen
trations bycA , cB , andcC , respectively. When the norma
ization conditioncA1cB1cC51 is satisfied at each spac
point, two of these variables are chosen to be independ
Hence we define the local kinetic variablesc(r ,t) and
f(r ,t) at positionr and timet as c5cA2cB and f5cA
1cB . We assume that these variables obey the follow
type of kinetic equation:

]c

]t
5“•S M1¹

dF

dc D1 f ~c,f!, ~1!

]f

]t
5“•S M2¹

dF

df D1g~c,f!, ~2!

whereM1 andM2 are the mobilities associated withc andf
and are assumed to be positive constants, although they
depend onc andf in general.F is a free energy functiona
of Ginzburg-Landau type:
05621
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F5E dr FD1

2
u“cu21

D2

2
u¹fu21w~c,f!G , ~3!

where D1 and D2 are positive constants andw(c,f) is a
potential function. The last terms of Eqs.~1! and ~2! are
reaction terms, andf (c,f) andg(c,f) are, in general, non-
linear functions ofc andf.

The kinetics of block-copolymer systems is described
the same type of equations as Eqs.~1! and ~2!. In this case,
f (c,f) and g(c,f), which are linear inc and f, come
from the nonlocal interaction between monomers.

Here we study the linear stability of the uniform equilib
rium solutionc5c0 and f5f0, determined byf (c0 ,f0)
50 and g(c0 ,f0)50. Using the Fourier componentscq
and fq with wave numberq for the deviation ofc and f
from c0 andf0, respectively, we have the linearized form
of Eqs.~1! and ~2! as

d

dt S cq

fq
D 5LqS cq

fq
D , ~4!

where the linear evolution matrixLq is given by

Lq52q2M~q2D1W!1A, ~5!

where M and D are diagonal matrices defined asM
5diag(M1 ,M2) and D5diag(D1 ,D2), and W5(wi j ) and
A5(ai j ) ( i , j 51,2) are matrices with componentsw11
5wcc(c0 ,f0), w125w215wcf(c0 ,f0), w22
5wff(c0 ,f0), a115 f c(c0 ,f0), a125 f f(c0 ,f0), a21
5gc(c0 ,f0), and a225gf(c0 ,f0), where the functions
with the subscriptsc andf mean the partial derivatives with
respect to their variables. Note that the matrixW is always
symmetric, whereas the matrixA is, in general, not symmet
ric, although it is symmetric for block-copolymer systems

The eigenvalueslq of Lq determine the linear stability o
the uniform equilibrium solution. One of the control param
eters for the stability in our model is the temperatureT,
which enters throughw11 andw22 which are linear functions
of T. Hereafter, we introduce for convenience the cont
parametert instead ofT, such that the uniform state becom
unstable ast increases. Note thatW determines the thermo
dynamic stability of the uniform state (c0 ,f0), which is
stable if w11>0 and detW>0 in the absence of chemica
reactions.

Since the eigenvalues of2q2M(q2D1W) are always
real, the properties ofA prescribe the type of instability. Fo
simplicity, we set M15M251 below, which does not
change the essence of the following argument. Suppose
system of ordinary differential equations for Eqs.~1! and~2!
(q50 mode! is stable, that is,

tr A,0 and detA.0. ~6!

As t is increased, the largest Relq becomes positive at a
finite wave number q5qcÞ0 and either Turing-type
(Im lqc

50) or Hopf-type (Imlqc
Þ0) instabilities occur de-

pending onA. When detLqc
50 and trLqc

,0, the Turing-
type instability occurs. In this case we expect th
1-2
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stationary~motionless! periodic structures emerge. On th
other hand, the Hopf-type instability, which we are co
cerned with, occurs when detLqc

.0 and

tr Lqc
5

~ tr W!2

4 trD 1tr A50 ~7!

with

qc
252

tr W
2 trD ~8!

for tr W,0. In this case a traveling wave or a standing o
cillation is expected to be revealed.

The above analysis implies that an oscillatory instabi
at a finite wave number, which is sometimes called a w
instability, is induced by the thermodynamic instability
phase separation. A wave instability also occurs in
FitzHugh-Nagumo model with nonlocal coupling whe
drifting domains have been observed@21#. It should be noted
that in block-copolymer systems only Turing-type instab
ties can occur since the system is variational.

B. Simplified model and its linear stability

Now we construct a concrete model which shows s
propagation of spatially periodic structures. We start with
lattice gas Hamiltonian for a ternary mixture:

H52
1

2 (
i,d

(
a,b

Jabĉa~ i!ĉb~ i1d!, ~9!

wherei denotes the lattice point andd stands for the neares
neighbor vector (udu51). ĉa( i)51 when the lattice pointi
is occupied by ana molecule, and otherwise equals zer
The coefficientJab is the interaction constant betweena and
b molecules, anda,b5A,B,C. We are assuming that th
interaction betweenA and B molecules is repulsive, i.e.
JAB,0, and thatC molecules are neutral for bothA and B
molecules. For simplicity, we hereafter consider the symm
ric case, that is,xAC5xBC , where xAC[2JAC1(JAA
1JCC)/2 and xBC[2JBC1(JBB1JCC)/2. By using the
mean field approximation and taking the continuum lim
one can readily obtain the free energy functional in the fo
of Eq. ~3!. Since this procedure is standard@22#, we do not
describe it in detail. The coefficientsD1 and D2 are given,
respectively, by

D15
JAA1JBB

4
2

JAB

2
, ~10!

D25
JAA1JBB

4
1

JAB

2
1JCC2JAC2JBC . ~11!

The uniform partw in Eq. ~3! is given by the expansion as

w52
t

2
c21

u

4
c41

K

2
~f2fc!

2, ~12!
05621
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t[2D12
1

fc
, ~13!

u[
1

3fc
3

, ~14!

K[
2D1

122fc
1

1

fc~12fc!
1

2

122fc
ln

fc

2~12fc!
,

~15!

and the higher order couplings betweenc andf are omitted
in Eq. ~12!. The constantfc is the spatial average off (0
,fc,1).

As is well known in the theory of phase separation@22#,
theD1 term cannot be ignored in stabilizing the short wav
length modes in the phase-separated state. On the other
theD2 term does not cause this difficulty so that we omit th
term for simplicity. The last term in Eq.~12! produces a
diffusion termM2K¹2f in the kinetic equation~2!. We will
ignore this term by puttingK50 in most of this paper. The
effect of this diffusion does not essentially change the
main dynamics, as will be shown in Sec. VI. By compari
Eqs.~13! and~15!, it is evident that the absence of diffusio
of f does not impose any restriction of the diffusion ofc.

Based on the above considerations, we can greatly s
plify the model equations~1! and ~2!. Under the further as-
sumptionM15M2, Eqs.~1! and~2! become, with appropri-
ately scaled variables~we use the same symbols for th
rescaled variables!,

]c

]t
5¹2@2D1¹2c2tc1c3#1 f ~c,f!, ~16!

]f

]t
5g~c,f!. ~17!

A Landau-type expansion of the potential~12! is valid for
the weak segregation regime near the phase-separation
peraturet50. We have verified in the numerical simulation
shown in Sec. III that the spatial variations ofc andf do not
deviate substantially from a sinusoidal function. Thus t
present treatment has internal consistency.

Suppose that the system undergoes the following cy
chemical reactions:

A→
g1

B→
g2

C→
g3

A, ~18!

whereg1 , g2, andg3 are the reaction rates. From the ma
action law, the reaction terms in Eqs.~16! and ~17! can be
written as

f ~c,f!52S g11
g2

2 Dc2S g12
g2

2
1g3Df1g3 , ~19!

g~c,f!5
g2

2
c2S g2

2
1g3Df1g3 . ~20!
1-3
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In this case, the stationary uniform solutionsc0 andf0 are
given by

c05
g3~g22g1!

g1g21g2g31g3g1
, ~21!

f05
g3~g21g1!

g1g21g2g31g3g1
, ~22!

and the matrixA is given by

A5S 2S g11
g2

2 D 2S g12
g2

2
1g3D

g2

2
2S g2

2
1g3D D . ~23!

A Hopf-type instability occurs when

g1g21g2g31g3g12S g2

2
1g3D ~g11g21g3!.0

~24!

and

~t23c0
2!2

4D1
2~g11g21g3!50 ~25!

at q5qc where

qc5S t23c0
2

2D1
D 1/2

. ~26!

The critical valuetc is given from Eq.~25! by

tc53c0
212AD1~g11g21g3!. ~27!

The other solution of Eq.~25! is unphysical since it cause
qc

2,0.

FIG. 1. Linear stability diagram for Eqs.~16! and~17! with Eqs.
~19! and~20! in t-g2 plane forD151, g150.3, andg350.05. The
solid and dashed lines in this figure indicate the Hopf- and Turi
type instabilities, respectively. All the quantities in this figure a
Figs. 2–8 below are dimensionless.
05621
The linear stability diagram for Eqs.~16! and ~17! with
Eqs. ~19! and ~20! in the t-g2 plane is shown in Fig. 1 for
D151, g150.3, andg350.05. The solid and dashed line
in this figure indicate the Hopf- and Turing-type instabilitie
respectively. The stationary uniform state is stable for para
eters below these lines.

III. NUMERICAL SIMULATIONS

In this section, we shall show, in one and two dimensio
the results obtained by computer simulations of Eqs.~16!
and ~17! with Eqs.~19! and ~20! above the stability lines in
Fig. 1.

First, we confirm numerically that a propagating soluti
exists in one dimension. The space mesh and the time in
ment have been set as 0.5 and 0.001, respectively. Fi
2~a! shows such a solution fort51.6 andg250.15, which is
just above the Hopf instability line~the solid line in Fig. 1!.
In Fig. 2~a! the profiles ofc(x,t) ~solid line! and f(x,t)
~dashed line! are plotted as functions of the spatial coord

-

FIG. 2. Spatial profiles ofc(x,t) ~solid lines! and f(x,t)
~dashed lines! obtained by one-dimensional simulations for~a! t
51.6, g250.15 ~just above the Hopf instability line! and ~b! t
51.6, g250.25 ~just above the Turing instability line! at t
55000. Both profiles ofc(x,t) andf(x,t) are propagating in thex
direction indicated by the arrow with the same velocity in the ca
of ~a!, whereas they are stationary in the case of~b!.
1-4
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TRAVELING WAVES IN PHASE-SEPARATING . . . PHYSICAL REVIEW E67, 056211 ~2003!
nate x at t55000. Both profiles ofc(x,t) and f(x,t) are
moving to the right, in this case, at a constant speed kee
their shapes and the phase difference between them, wh
Fig. 2~b! depicts stationary patterns ofc and f without a
phase difference fort51.6 andg250.25 above the Turing
instability line.

A. Traveling lamellar pattern

Now we extend the simulations to two dimensions. T
simulations have been carried out on a 1283128 square lat-
tice with the mesh sizeDx50.5 using the finite difference
Euler scheme with a fixed time stepDt51023 for several
values of parameterst andg2. Other parameters are fixed
D151, g150.3, andg350.05. As the initial conditions we
start with homogeneous states with small random pertu
tions which satisfŷ c&5c0 and ^f&5f0 and use periodic
boundary conditions, where the angular brackets mean
tial averages.

As predicted by the linear stability analysis, no patte
appears for parameters below the solid or dashed lines in
1. For parameters above the dashed line at which the Tur
type instability occurs, stationary lamellar or hexagonal p
terns appear, depending on the equilibrium values ofc0 and
f0. For parameters above the Hopf-type instability li
~solid line in Fig. 1!, various traveling patterns are observe
Henceforth, we concentrate on the parameter region nea
Hopf instability line.

Figure 3 displays three snapshots ofc(r ,t), indicated in
gray scale increasing from black to white, att550 ~a!, 500
~b!, and 5000~c! for t51.6 andg250.2 (c0520.059, f0
50.29). In the early stage, irregular patterns with motions
distorted standing waves are formed@Fig. 3~a!#. After this
transient regime, partially coherent lamellar structures wh
are traveling emerge@Fig. 3~b!#. The system eventually
reaches a state in which the lamellar structure extended to
whole system is traveling at a constant speed@Fig. 3~c!#. The
arrows in Fig. 3 indicate the directions of propagation of t
lamellar structures. The behavior is similar to that repor
by Hildebrandet al. @5# in surface chemical reaction sys
tems, although the evolution equations are quite differen

B. Traveling hexagonal pattern

One of the characteristic features of the present mo
system~16! and~17! with Eqs.~19! and~20! is that not only

FIG. 3. Snapshots ofc(r ,t), indicated in gray scale increasin
from black to white, att550 ~a!, 500 ~b!, and 5000~c! for t
51.6 and g250.2. The white arrow indicates the direction
propagation of the lamellar structure.
05621
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lamellar patterns but also hexagonal structures can und
coherent propagation by with appropriate valuesc0 andf0.

Figure 4 shows one example forc0520.20, f050.40,
where three snapshots ofc(r ,t) are displayed in gray scal
increasing from black to white att550 ~a!, 500 ~b!, and
5000~c! for t51.6 andg250.1. At the early stage, droplet
like domains move irregularly, accompanied by breakups
coalescence of domains@Figs. 4~a! and 4~b!# and finally form
a regular hexagonal pattern traveling in one direction a
constant speed@Fig. 4~c!#. The propagation direction of the
hexagons is indicated by white arrows in Fig. 4.

Another type of traveling hexagons appears in Fig.
where three snapshots ofc(r ,t) at t550 ~a!, 500 ~b!, and
5000 ~c! are displayed fort52.0 and g250.06 (c05
20.33, f050.50). The transient behavior of this system
similar to that shown in Fig. 4. However, the propagati
direction~white arrows in this figure! in the asymptotic state
is perpendicular to that of the primary wave vectors.

Thus, it is found that there are at least two different typ
of traveling hexagons. Hereafter, we call the case shown
Fig. 4 type I and that in Fig. 5 type II.

Several ‘‘phases’’ of nonequilibrium states have been
tained by carrying out the simulations for various para
eters. Figure 6 summarizes, in the parameter space (g2 ,t),
the various dynamic structures in two dimensions. The sy
bols indicate stationary lamellar structures~closed squares!,
traveling lamellar structures~open circles!, traveling hexago-
nal structures of type I~crosses!, traveling hexagonal struc
tures of type II~pluses!, and the uniform stable state~open
square!. For some parameters we could not distinguish
tween type I and type II hexagons within the present sim
lations. Such parameters are plotted with asterisks in Fig

FIG. 4. Snapshots ofc(r ,t) indicated in gray scale increasin
from black to white att550 ~a!, 500 ~b!, and 5000~c! for t51.6
andg250.1. The white arrow indicates the direction of propagati
of the hexagonal structure~type I!.

FIG. 5. Snapshots ofc(r ,t) indicated in gray scale increasin
from black to white att550 ~a!, 500 ~b!, and 5000~c! for t52.0
andg250.06. The white arrow indicates the direction of propag
tion of the hexagonal structure~type II!.
1-5
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In this figure the Hopf and Turing instability lines are al
shown for convenience; they are the same as those in Fi

It is noted here that the value off(r ,t), which is the sum
of the local concentrations ofA and B molecules, become
negative in some parameter regions. This shortcoming is
to the simplification of the free energy given by Eq.~12!.
However, we carried out the simulations avoiding this p
rameter region and believe that the results obtained wo
not be altered even if a more refined free energy were
ployed.

The amplitude of the traveling waves is plotted in Fig.
for both lamellar ~open circles! and hexagonal~crosses!
structures. It is evident that the bifurcation for lamellae
supercritical whereas that for hexagons is subcritical.

FIG. 6. Parameter dependence of the nonequilibrium state
(g2 ,t) space. The symbols indicate stationary lamellar structu
~closed squares!, traveling lamellar structures~open circles!, travel-
ing hexagonal structures of type I~crosses!, traveling hexagonal
structures of type II~pluses!, and the stationary uniform state~open
square!. The asterisks mean the states where we could not dis
guish between type-I and type-II hexagons within the present si
lations. The Hopf and Turing instability lines are also shown
convenience; they are the same as those in Fig. 1.

FIG. 7. Amplitudes ofc in the traveling state for the lamella
~open circles! @g150.3, g250.2, andg350.05] and hexagona
~crosses! @g150.3, g250.1, andg350.05] structures as function
of the control parametert.
05621
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In order to verify that the emergence of traveling waves
quite general in the present model system, we carried
systematic simulations for a smaller value oft, i.e., t
50.2. Setting the other parameters asg150.005 andg3
50.0001, the bifurcation line in Fig. 1 shifts downward an
tc'0.16–0.17 depending on the reaction rateg2. We found
that stable propagating lamellae appear forg250.0012, trav-
eling hexagons of type I appear forg250.0009, and those o
type II appear forg250.0008. These are the same tendenc
as those shown in Fig. 6. Wheng250.001, we found an
oscillation such that two kinds of lamellae perpendicular
each other are formed alternately. A similar pattern for
different set of parameters has also been obtained nea
point where the Turing-type and Hopf-type bifurcation lin
cross@23#. Although we carefully changed the parameterg2
step by step, the coexistence of motionless and propaga
lamellae@21# was not observed in the present model syste
Finally, we mention that the propagating waves are rob
once they are formed. Any destabilization of the waves
not been realized. This will be confirmed theoretically for t
lamellar pattern in the next section.

IV. THEORETICAL ANALYSIS
OF TRAVELING LAMELLAE

The computer simulations given in the previous sect
show that the lamellar structure exhibits self-organized
herent propagation above the Hopf bifurcation threshold
should be noted that a standing oscillation has never b
observed in simulations. In order to understand this prope
we derive the amplitude equation post-threshold and ex
ine the stability of the oscillatory domains.

A. Amplitude equation

We study the time-evolution equations~16!–~20! in one
dimension near the Hopf bifurcation point at the critic
wave numberqc in the weakly nonlinear regime. The ampl
tude equation for Eqs.~16! and~17! near the Hopf instability
line is derived by means of the usual reductive perturbat
method@24,25#, assuming that the bifurcation is supercri
cal, which is indeed the case as is shown in Fig. 7.

Near the bifurcation point, the most unstable modeU(x,t)
is the relevant number of degrees of freedom of Eqs.~16!
and ~17!, that is, u;u01U, where u[(c,f)T and u0
[(c0 ,f0)T. In terms of the eigenfunctionsUL and UR de-
fined below, the unstable modeU(x,t) is expressed as

U~x,t !5WL~x,t !UL1WR~x,t !UR1c.c., ~28!

where c.c. denotes the complex conjugate andWL(x,t) and
WR(x,t) are the complex amplitudes of the plane wave
lution propagating to the left and right, respectively. T
wave numberqc and the frequencyvc of the plane wave are
determined by the eigenvalue problem

~] t2Lqc
!UL50, ~29!

in
s

n-
u-
r
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where] t denotes the partial differential operator with resp
to t (UR also satisfies the same equation!. For the present
problem, we choose

UL5S 1

a D eiqcx1 ivct, UR5S 1

a D e2 iqcx1 ivct ~30!

with a[(a221 ivc)/a12 andvc (.0) given by

vc
25detLqc

52a22
2 2a12a21. ~31!

By the standard procedure of perturbation@24,25#, the final
amplitude equations forWL andWR are given, respectively
by

] tWL5mWL1b]x
2WL2guWLu2WL2huWRu2WL , ~32!

] tWR5mWR1b]x
2WR2guWRu2WR2huWLu2WR , ~33!

where all the coefficients are complex and are given by

m[
t̃

2
qc

2S 11
ia22

vc
D , ~34!

b[2D1qc
2S 11

ia22

vc
D , ~35!

g[
3

2
qc

2S 11
ia22

vc
D F1124c0

2qc
2

3
a2222ivc

9~a111a22!~a2222ivc!23vc
2G , ~36!

h[3qc
2S 11

ia22

vc
D F1124c0

2qc
2 a22

9~a111a22!a221vc
2G ,

~37!

and t̃[t2tc with the critical valuetc of t at which the
bifurcation occurs. The constantg should not be confused
with the function in Eq.~20!. This type of amplitude equa
tion was also obtained in Refs.@26,27#. Note that Eqs.~32!
and ~33! do not have terms proportional to]xWL or ]xWR .
This reflects the fact that in our model the group velocity
always zero, that is,dv(qc)/dq50, wherev(q)[AdetLq
near the bifurcation point. This comes from the particu
choice ofD250 in Eq.~3!. This will be discussed in Sec. VI

B. Stability of the traveling wave

Here we examine the stability of the traveling wave so
tion of Eqs. ~32! and ~33!. These equations have a set
solutionsWL

(0) andWR
(0) as

WL
(0)50, WR

(0)5N0e2 iqx1 iV0(q)t, ~38!

where the real constantsV0 andN0 are given by
05621
t

r

-

N0
25

1

g1
~m12b1q2!, ~39!

V05m22b2q22
g2

g1
~m12b1q2!, ~40!

and m5m11 im2 , b5b11 ib2 with real numbersm1 , m2 ,
b1, and b2. A similar notation has also been utilized forg
andh.

In order to study the stability of the solution~38!, let us
introduce deviationsj andh as

WL5WL
(0)1j, ~41!

WR5WR
(0)1h. ~42!

Substituting Eqs.~41! and~42! into Eqs.~32! and~33! yields
up to the first order of the deviations

] tj5mj1b]x
2j2hN0

2j, ~43!

] th5mh1b]x
2h2~WR

(0)!2h̄22gN0
2h, ~44!

whereh̄ is the complex conjugate toh. Settingj}exp(iqx
1lt), we obtain

l5m2bq22hN0
2 . ~45!

The growth rate of the deviationj is given by

Rel5~m12b1q2!S 12
h1

g1
D , ~46!

where we have used Eq.~39!. Since (m12b1q2)/g15N0
2

.0, we need the stability condition for the traveling wa
@26,27#

h1.g1 . ~47!

Next, we investigate the stability of the standing wa
solution given by

WL
(0)5N0eiqx1 iV0t, WR

(0)5N0e2 iqx1 iV0t, ~48!

whereV0 andN0 satisfy the following relation:

iV05m2bq22gN0
22hN0

2 . ~49!

We introduce small deviations of the amplitudesj(x,t),
h(x,t) and the phasesw(x,t),u(x,t) as

WL5N0~11j!eiqx1 iV0t1 iw, ~50!

WR5N0~11h!e2 iqx1 iV0t1 iu. ~51!

From Eqs.~32!, ~33!, ~50!, and ~51! we obtain the time-
evolution equations for the deviations. The deviations of
amplitudes obey up to the first order
1-7
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] tj522g1N0
2j22h1N0

2h1b1]x
2j22qb2]xj22qb1]xw

2b2]x
2w, ~52!

] th522g1N0
2h22h1N0

2j1b1]x
2h12qb2]xh12qb1]xu

2b2]x
2u, ~53!

where we have used Eq.~49!. In the long wavelength limit,
we may retain only the first two terms of Eqs.~52! and~53!.
In this case, the eigenvalues of the time-evolution matrix

l522N0
2~g16h1!. ~54!

Sinceg1 is positive when the bifurcation is supercritical, w
have the stability condition of the standing wave@26,27#:

2g1,h1,g1 . ~55!

According to numerical calculations based on Eqs.~36! and
~37!, we did not find parameters for which the standing wa
is stable as long asg1.0. This agrees with the fact that w
never found a standing wave in the simulations of Eqs.~16!–
~20!.

C. Phase dynamics for traveling waves

Now we discuss the phase dynamics for the travel
wave solution. We write a solution of Eqs.~32! and~33! with
the deviationsj(x,t) andw(x,t) as

WL50, WR5N0~11j!e2 iqx1 iV0t1 iw. ~56!

The zeroth order solution was obtained in Eqs.~38!. The first
order equations are given by

] tj522g1N0
2j1b1]x

2j12qb2]xj12qb1]xw2b2]x
2w,

~57!

] tw522qb1]xw1b1]x
2w1b2]x

2j1qb2]xw22g2N0
2j.

~58!

Since the amplitude deviation decays rapidly compared w
the phase deviation in the long wavelength modulation,
may eliminatej adiabatically by putting] tj50 in Eq. ~57!,
so that we have

j5
1

2g1N0
2 ~2qb1]w2b2]x

2w12qb2]xj1b1]x
2j!.

~59!

Applying Eq. ~59! iteratively, we obtain the following ex-
pression forj as a gradient expansion ofw @26,27#:

j5
qb1

g1N0
2
]xw1

b2

2g1N0
2 S 211

2q2b1

g1N0
2 D ]x

2w1•••. ~60!

Substituting Eq.~60! into Eq. ~58!, we obtain up to the sec
ond order derivatives off

] tw5C]xw1D]x
2w, ~61!
05621
e

e

g

h
e

where

C[2qS b22
g2

g1
b1D , ~62!

D[S b11
g2

g1
b2D S 12

2q2b1

g1N0
2 D . ~63!

Here we consider the case where the factorb11g2b2 /g1 in
Eq. ~63! is positive, so that the traveling wave solution
stable for uqu→0. In this case, the coefficientD becomes
negative for large values ofuqu, which causes an Ekhaus
type instability. Since 122q2b1 /(g1N0

2)5(m123q2b1)/
(g1N0

2), this instability occurs when

q2.
m1

3b1
. ~64!

Note from Eq.~39! that the conditionq2,m1 /b1 is required
for the traveling wave solution to exist.

We can obtain amplitude equations for traveling lamel
structures which are similar to the equation for the on
dimensional case. The complex amplitudesWL(r ,t) and
WR(r ,t) of waves propagating to the left and right in thex
direction obey the following equations, corresponding
Eqs.~32! and ~33!:

] tWL5mWL1bS ]x2
i

2qc
]y

2D 2

WL2guWLu2WL

2huWRu2WL , ~65!

] tWR5mWR1bS ]x2
i

2qc
]y

2D 2

WR2guWRu2WR

2huWLu2WR , ~66!

where the coefficientsm, b, g, and h are defined in Eqs.
~34!–~37!.

We can also develop the phase dynamics in two dim
sions from the above amplitude equation. We write a trav
ing wave solution of Eqs.~65! and~66! propagating in thex
direction as

WL50, WR5N0@11j~r ,t !#e2 iqx1 iV0t1 iw(r ,t), ~67!

wherej(r ,t) andw(r ,t) are the small deviations associate
with the amplitude and phase, respectively. Repeating
same procedure shown above, we obtain the phase equ
corresponding to Eq.~61! as

] tw5C]xw1D]x
2w2

q

qc
S b11

g2

g1
b2D ]y

2w, ~68!

whereC andD are given by Eqs.~62! and~63!, respectively.
Equation~68! implies that whenq.0 the phase deviation in
the y direction is destabilized. This corresponds to a zigz
type instability.
1-8
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In the numerical simulations shown in Sec. III we nev
found either Ekhaus- or zigzag-type instabilities. We sho
say that the traveling wave solution is quite stable in o
model system.

V. THEORETICAL ANALYSIS
OF TRAVELING HEXAGONS

In two-dimensional systems, not only a lamellar structu
but also a hexagonal structure is allowed to exist as a
tially periodic structure. As was shown in the previous s
tion, the hexagonal structure also undergoes coherent pr
gation above the Hopf instability line.

We do not carry out a systematic derivation of the amp
tude equations for the traveling hexagons mainly because
bifurcation is subcritical and hence evaluation of each co
ficient of the amplitude equation is more involved. Here
employ a simple mode expansion focusing on the two ty
of the traveling pattern obtained in the simulations.

We seek a solution of Eqs.~16! and ~17! in the form
c(r ,t)5ĉ(r2Vt), f(r ,t)5f̂(r2Vt), with a traveling ve-
locity V. Here we make the approximation that the functio
ĉ(r ) andf̂(r ) are represented in terms of the lowest Four
modes as

ĉ~r !5 (
k523

3

ĉqk
eiqk•r, f̂~r !5 (

k523

3

f̂qk
eiqk•r, ~69!

where qk[„qc cos(2p/3)k,qc sin(2p/3)k… (k561,62,63)
andq0[0. Note thatĉq0

5c0 and f̂q0
5f0. We have veri-

fied numerically that the actual spatial profile does not de
ate substantially from Eq.~69! near the Hopf bifurcation line
although it is subcritical.

From Eqs.~16!, ~17!, and ~69!, we obtain a set of equa
tions for ĉqk

, f̂qk
, andV. Eliminating f̂qk

and introducing

the real amplitudeAk and the phaseuk as ĉqk
5Ak exp(iuk),

we finally obtain

V~vk!Ak5mAk23qc
2@2c0AlAme2 iw1Ak

312~Al
21Am

2 !Ak#

~70!

for k51,2,3 @ l ,m5k11,k12 ~mod 3!# with

V~v![
v22vc

2

v21a22
2 ~a222 iv!, ~71!

wherew[u11u21u3 , m[2qc
2(Dqc

22 t̃)2(g11g21g3),
vk[qk•V, andvc[Im l(qc) is the critical frequency at the
Hopf bifurcation point. Note that two of the three phase va
ablesuk are arbitrary and only the sumw is determined by
the above equations. Therefore, Eqs.~70! and~71! under the
conditionv11v21v350 determineAk , w, andV.

WhenAkÞ0, the imaginary part of Eq.~70! gives

2vk

vk
22vc

2

vk
21a22

56qc
2c0

AlAm

Ak
sinw. ~72!
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In the special case that sinw50, Eq. ~72! has the solutions
vk50 and6vc . If we choosev150, v25vc , andv35
2vc , then the traveling velocityV is perpendicular toq1
@see Fig. 8~a!#. This is the type-I solution. On the other han
the type-II solution of Eq.~70! is represented asv15
22v2 and v25v3, which the conditionv11v21v350.
In this case,V is indeed parallel toq1 as shown in Fig. 8~b!.

VI. CONCLUDING REMARKS

In this paper, we constructed a model equation for ph
separation of chemically reactive ternary mixtures. In t
model the thermodynamic destabilization induces a Turi
or Hopf-type instability at a finite wave number, dependi
on the parameters in the reaction terms. The phase diag
for the nonequilibrium states was obtained numerically. T
traveling waves appear as a Hopf bifurcation at a finite wa
number. In two-dimensional simulations we obtained a tr
eling lamellar structure and two types~type I and type II! of
traveling hexagonal structures.

We derived the amplitude equations for the supercriti
Hopf bifurcation at a finite wave number from the mod
equations and investigated the stability of traveling wav
and standing oscillations in one-dimensional systems.
traveling wave is found to be stable in some parameter
gions. However, we have never found, at least numerica
any region in which a standing oscillation is stable. T
mathematical structure of the two types of traveling he
gons has been clarified by the amplitude equations der
by the single mode approximation in two dimensions. Ho
ever, in order to make a full comparison with the phase d
gram shown in Fig. 6, obtained numerically, one need
stability analysis of the traveling hexagonal patterns, wh
is more involved mathematically and is beyond the scope
the present study.

In the present set of model equations~16! and ~17!, we
omitted the diffusion off. As a consequence, the grou
velocity of the traveling waves turns out to be identica
zero, as mentioned in Sec. IV A. However, it was shown
Ref. @26# that the stability conditions~47! and ~55! for trav-
eling lamellar domains are unaltered when the group velo
is finite. Furthermore, we carried out additional simulatio

FIG. 8. Schematic picture of the directions of traveling veloc
V and wave vectorq1 for traveling hexagonal domains of type I~a!
and type II~b!. Thick and thin arrows indicate the directions ofV
and q1, respectively, and the hatched regions representc-rich do-
mains.
1-9
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by adding the diffusion termK¹2f on the right-hand side o
Eq. ~17!. Although we do not exclude the possibility th
other spatiotemporal patterns might appear whenKÞ0, we
obtained essentially the same traveling waves, e.g., for
fixed values ofK50.05, D151, g150.3, g350.01, and
several values ofg2 andt.

There is a simple explanation as to why one needs th
components of chemical species for coherently propaga
domains. Suppose that the species are arrayed in
dimensional space asA,B,C,A. After one cycle of chemica
reaction, this order becomesB,C,A,B. This means that the
domains are moving to the left. It is clear from this argume
that the relative phase difference of the chemical reac
determines the propagation direction and that a standing
cillation is quite unlikely in the present system.

What we have shown in this paper is that phase transit
in nonequilibrium conditions produce a rich variety of se
organized domain dynamics, which never occur in therm
equilibrium where the ordered state is motionless and is s
ply uniform or at most modulated in space. Although we
not know, at present, any concrete materials for pha
separating reactive ternary mixtures, we hope that the pre
.

tt.

.

s.
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study will trigger further experiments for mesoscopic doma
dynamics far from equilibrium.

Thermal fluctuations have been believed to be unimp
tant for pattern formation far from equilibrium as far as ma
roscopic patterns such as Rayleigh-Be´nard convection and
Belousov-Zhabotinski reaction are concerned.~See, how-
ever, the recent experiments@28# for electroconvection of
liquid crystals.! In contrast, when the domain structure is
microscopic scale as in the present model system, ther
fluctuations cannot be ignored near the bifurcation points
of equilibrium and might qualitatively alter the properties
the transition. Concentration fluctuations around the de
ministic motion may also exhibit some characteristic featu
inherent to nonequilibrium systems. We hope to return
these fundamental problems elsewhere in the future.
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